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Replication Example: Autonomous Driving

e Situation: Learn to drive by imitating
human behavior.

e What is cloned: Human driving policy
(steering, braking, etc.)

e Used to clone: Neural policy (CNN +
RNN)

e Dataset: Logged sensor data (video,
LiDAR, GPS, IMU)

e Goal: Generalize human-like driving to
unseen situations.
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Replication Example: Distilling Large Language Models

e Situation: Reproduce the behavior of a large
model like GPT-4.

e What is cloned: Outputs (text responses) of the
large model.

e Used to clone: Smaller neural model (e.g.,
GPT-2 or TinyLLaMA)

e Dataset: Synthetic queries + responses
generated by the teacher model.

e Goal: Replicate output quality with fewer
parameters and lower cost.
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Replication Example: Game Al

e Situation: Train an agent to play
competitive games (e.g., StarCraft, Dota
2).

e What is cloned: Human expert
gameplay (actions, timing, strategy).

e Used to clone: Neural policy trained
via behavior cloning.

e Dataset: Logs of expert games (states
+ actions).

e Goal: Bootstrap a policy that can later
be fine-tuned via reinforcement learning.
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Replication Example: Robotic Manipulation

e Situation: Train a robot arm to manipulate or .
grasp objects.
e What is cloned: Expert physical behavior (e.g.,

grasping, opening doors).

e Used to clone: Neural policy trained on .
demonstrations.

e Dataset: Teleoperation data or kinesthetic

teaching (sensor + video).

e Goal: Enable robots to generalize physical skills

to new objects or settings.
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Replication Example: Financial Deep Hedging

e Situation: Hedge a derivative under realistic
market conditions (frictions, incomplete markets).
Derivative use case : gold prices, denoted Sy are
now high. A gold miner wants to invest but will GO
BANKRUPT if price a year from now drops below
350095 /0z (today Sp > 4000%/0z.). Want a contract
to pay 10M$ if St < 3500 (T = 1), nothing
otherwise. This is a 'digital (or binary) put’.

The seller bank cannot just sell short the gold, if Figure: Gold prices 2000-2025
gold rises again the loss for the bank is huge. Needs
to sell the right amount of gold A; to reach exactly
the final value G = g(S7).
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The Challenge: Hedging Options in the Real World

e What is an Option? A financial contract (liability) whose value G depends on a future
asset price, e.g. G = g(S7). The seller (trader) must protect themselves NOW against
potential loss; this protection is called hedging or replication; it works by buying quantity A,
of underlying assets S;. Similar to insurance companies but less diversification possible.

e how to find A; ? If S; deterministic A = Jsg(S); otherwise need a model for the
uncertainty process

e Theory: for many models like Black-Scholes (1973) ‘ dS:/S¢ = pdt + o dW; ‘ under
hypothesis (continuous trading, no fees) perfect hedging (zero risk) can be reached. The
strategy [; containing A; parts of S; + cash (auto-financed) is such that 1+ = G in every
state of the world, not relying on the law of large numbers like insurance.
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Data flow in a classical approach
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Practical limitations of Classic Models

e Reality Check: In practice, perfect hedging is impossible because: trading occurs only in
discrete time (e.g., once a day, once an hour), moreover every trade incurs transaction costs
(), reducing profits.

e The Goal: We need a flexible strategy that minimizes the uncertainty (risk) associated with
the final cost of hedging, especially when transaction costs are high.

e Discretization Risk: When trading is discrete, the instantaneous "sensitivity” A; and

'+ = 0sA; calculated by models like Black-Scholes (B&S) becomes inaccurate, leading to
hedge errors.

e The Infinite Cost Problem: If B&S is used for frequent hedging (At — 0) in the presence
of transaction costs (« > 0), the cumulative costs approach infinity.

e The Leland Adjustment: Leland (1985) introduced a mathematical fix by adjusting the
asset’s volatility (v*) based on the frequency and cost («) to keep costs finite, but this is still
a model-dependent solution while in practice model parameters are unknown.
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Deep Hedging: Learning the Optimal Action

e The Deep Hedging Advantage: Deep Learning offers a model-free alternative, learning
the optimal action directly from the data, adapting inherently to discrete time and costs.

e Deep Hedging (cf. H Buehler, L Gonon, J Teichmann, B Wood 2019) uses a Neural
Network (NN) to determine the optimal number of shares APH to hold at each trading point.

e 'classical’ Deep Hedging : mostly a reinforcement learning approach to maximize average
final gain E[gain] of the option seller or E[utility(gain)]); works well in several cases but may
be slow to converge in some situations, needs many training trajectories ~ 10°(!!!), but data
100Y old is not relevant !!!
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Deep Hedging: our approach

e tailored optimization criterion: Instead of aiming for a theoretical perfect price (like in B&S),
our NN is trained to minimize the Standard Deviation (variability or risk) of the final profit
or loss (Z7) incurred by the trader. It uses statistical metrics on the distribution of the gains

not only the average.

e No complicated reinforcement learning, just plain function optimization
A = NN(time left, price/strike, previous A)

e Model-Free: The NN learns the best strategy directly from simulated asset paths generated
under the real-world probability (), not under complex, often fictional, risk-neutral
measures (Q). This eliminates the need of a model !
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Neural Network Machinery

e Architecture: standard feed-forward neural network (ReLU activated linear layers).

e Design Philosophy: The architecture is intentionally simple and lightweight to
demonstrate that powerful performance doesn’t require massive computational resources.

e Qutput: The final layer outputs the desired hedge position (A;), which is the number of
assets the trader should hold at time t.
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e Training procedure: a batch of trajectories are selected at each step. NN computes the
delta and final value for each one and is updated to minimize the loss at final time. Same NN
model is used at all times in a training step.

e Unusual setting: several NN calls per trajectory, the loss is not in average form but is a
statistical metric of the batch losses

Historical data

Historical data Model list

training

Hedging formula

model + parametors—— Tedging formula

Figure: left: Data flow in our model : the NN train directly on historical data without any stochastic
model; right: recall of classical model
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Empirical results

e Minimal Data Requirement: Unlike previous deep hedging studies that required 10° or 108
asset paths, this research shows that satisfactory performance can be achieved using as few as
256 simulated trajectories for training.

e Overlapping Sequences: The model's robustness was tested using an even smaller dataset:
256 overlapping sequences of length 30 derived from a single sequence of just 285 observation

points.
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Conclusion and Future Directions

e Success in Simplified Markets: The neural network successfully finds an optimal,
risk-minimizing hedge strategy in the Geometric Brownian Motion environment, superior to
both Black & Scholes and Leland models, despite minimal training data.

o Implication for Real Markets: This ability to calibrate on limited data paves the way for
practical use on real-time financial series

e Practical Implementation: The ability to train effectively using only a few asset paths, or
even derived overlapping sequences, suggests that Deep Hedging can be applied using raw
market data alone and when large volumes of historical data for a specific option/maturity
may not be available.

e Current Limitation: When applied to real S&P 500 daily data (which features changing
volatility regimes), the simple NN failed, producing unrealistic deltas.

e Future Work: To address real-market complexity, future neural network development should
incorporate additional state variables (inputs) such as market implied volatility or realized
volatility over a historical window, enabling the model to adapt to volatility regime changes.
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