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Background

Motivations, context and prerequisites
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• Many real-world trajectory tracking applications suffer 
from drops in data – e.g. navigation solutions are affected 
by GPS drop-outs

• Our goal is to reconstruct plausible trajectories from 
incomplete observations by ensuring continuity and over-
all dynamic trends

Motivation: Why Trajectory Inference
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Starting from a simple setup

• Start from a simple setup, using synthetic data – easier to build dataset

• Input: sequence of 2-dimensional vectors:
𝑋 = < 𝑥1, 𝑦1 >,< 𝑥2, 𝑦2 >,… ,< 𝑥𝑛, 𝑦𝑛 >

• Mask (hide) roughly 20% of points, to act as data drop-outs

• Output: smooth and continuous complete trajectory

Problem Setup
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Why TCNs?

Common approaches for ordered data inference

Method Strength Limitation

Linear Interpolation Simple and fast
Ignores dynamics; produces unrealistic 
motion

RNN / LSTM
Learns sequential 
dependencies

Sequential computation → slower, 
vanishing gradients

Transformer Captures long-range context
Computationally heavy; requires large 
datasets

Temporal Convolutional 
Network (TCN)

Parallel, stable, efficient 
temporal modeling

Fixed receptive field (but sufficient for 
smooth trajectories)
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A brief introduction

• A TCN is a 1-dimensional convolutional network applied along the time axis

• Initially, TCNs were introduced based on the following principles: 

1. Input and output have the same dimensions

2. No leakage of the future into the past

• To achieve 1. a classic TCN uses a 1-dimensional fully convolutional network architecture where 
each hidden layer is the same length as the input layer, and zero padding of length (kernel size − 
1) is added to keep subsequent layers the same length as previous ones

• To achieve 2. TCN uses causal convolutions, convolutions where an output at time t is convolved 
only with elements from time t and earlier in the previous layer

• Simply put,
TCN = 1 − D FCN + causal convolution

Temporal Convolutional Networks (TCNs)
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Slight variation

• Main objective is trajectory inpainting, not forecasting – we do not want to enforce causality

• We will use a variation on the classic TCN architecture, where the present can be informed by 
the future as well as the past

• We did not use causal convolutions

• Each convolutional layer looks at a window of both past and future points

• Stack multiple layers which allows the model to capture long-term patterns

Temporal Convolutional Networks
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Expanding receptive field

• We want the neural network to be able to use both local and global data from out trajectory

• Dilated Convolutional Layers are a way of ensuring that without overloading the number of 
parameters

• A dilated convolution acts like a normal convolution but instead of applying the kernel to 
consecutive time steps, it skip a pre-set number of steps in-between

• Mathematically:

𝑦 𝑡 = ෍

𝑘=−(K−1)/2

(𝐾−1)/2

𝑤𝑘 ⋅ 𝑥 𝑡 − 𝑑 ⋅ 𝑘 ,

where 

• K = kernel size

• d = dilation factor

• 𝑤𝑘 = kernel weight (comprising the filter)

• x = input vector

Dilated Convolutional Layers

K = 3

Dilation Points Used (for time step t) Receptive field

1 (t−1, t, t+1) 3 time steps

2 (t−2, t, t+2) 5 time steps

4 (t−4, t, t+4) 9 time steps
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• Residual connections add the input of a layer back to its output, which will prevent information 
loss and eases gradient flow

• Layer normalization ensures consistent feature scaling across time

• Implementing these are common practice and will make TCNs more stable

Residual Connections and Normalization
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Implementation

Neural Network Architecture & Training 
strategy



Each time step is encoded as a 4-
dimensional vector:

• x – x-coordinate (possibly masked)

• y – y-coordinate (possibly masked)

• mask – 1 if missing, 0 if observed 

• time – normalized time index from 0 to 1

Input structure
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Model Architecture Overview

Layer Type Channels Dilation Purpose

Input — 4 — Position + mask + time

Block 1
Conv1D +  LN + ReLU + 
Residual

64 1 Local temporal features

Block 2
Conv1D + LN + ReLU + 
Residual

64 2 Medium context

Block 3
Conv1D + LN + ReLU + 
Residual

64 4 Longer dependencies

Block 4
Conv1D + LN + ReLU + 
Residual

64 8 Broader motion patterns

Block 5
Conv1D + LN + ReLU + 
Residual

64 16
Global temporal 
structure

Head Conv1D (1×1 kernel) 2 — Predicts (x,̂ ŷ)
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• During training, we intentionally remove segments of the trajectory (approximately 20%)

• The mask channel marks the missing regions

• The model will infer the missing trajectory points from the observed context before and after 
the gap

• For the same dataset, multiple segments will be randomly masked 

• Each masking will act as a different dataset, therefore augmenting the data

Masking Strategy
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We train the model using a composite loss to achieve precision, continuity and smoothness of the 
prediction:

Weighted MSE
𝑳𝒎𝒔𝒆 = 𝑴𝑺𝑬𝒎𝒂𝒔𝒌𝒆𝒅 + 𝜶𝑴𝑺𝑬𝒖𝒏𝒎𝒂𝒔𝒌𝒆𝒅

• Strongly penalizes errors in masked segments

• Very lightly penalizes observed areas – controlled by the parameter α

Continuity Loss

𝑳𝒄𝒐𝒏𝒕 = 𝒚𝒕𝟏
𝒑𝒓𝒆𝒅

− 𝒚𝒕𝟏−𝟏

𝟐

+ 𝒚𝒕𝟐
𝒑𝒓𝒆𝒅

− 𝒚𝒕𝟐+𝟏

𝟐

Where 𝑡1, 𝑡2 are the times corresponding to the beginning and end of the hidden segment of the 
trajectory.

Smoothness Loss

𝑳𝒔𝒎𝒐𝒐𝒕𝒉 =
𝟏

𝑻
෍

𝒕

𝒚𝒕
𝒑𝒓𝒆𝒅

− 𝒚𝒕−𝟏
𝒑𝒓𝒆𝒅

𝟐

Implemented Loss Function:
𝑳 = 𝑳𝒎𝒔𝒆 + 𝝀𝟏𝑳𝒄𝒐𝒏𝒕 + 𝝀𝟐𝑳𝒔𝒎𝒐𝒐𝒕𝒉

Where 𝜆1, 𝜆2 are parameters that have to be set

Loss Function
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• For simplicity, the neural network was trained and evaluated on 
synthetic datasets

• Proposed type of trajectory:

2D Wiggly Trajectory with Noise
𝑥 𝑡 = sin( 2𝜋𝑡 + 𝜙𝑥) + 0.3 sin( 6𝜋𝑡 + 𝜙𝑦) + 𝜖𝑥,

𝑦 𝑡 = cos( 2𝜋𝑡 + 𝜙𝑦) + 0.3 sin( 4𝜋𝑡 + 0.5 + 𝜙𝑥) + 𝜖𝑦,

where:

𝜙𝑥, 𝜙𝑦 ∼ Uniform 0 2𝜋 are random phase shifts,

𝜖𝑥, 𝜖𝑦 ∼ 𝒩 0 𝜎2 are Gaussian noise terms

• Phase shifts and random noise were added for data augmentation 
purposes

Data (Synthetic)
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Results & 
Conclusions
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• Sanity check initial attempt was made with a synthetic dataset containing 2 trajectories

• The dataset was constructed using random different masked segments of the same 2 
trajectories

• Essentially augmented dataset to have 100 entries for each generated trajectory (200 total)

First attempt



• Optimizer: Adam 

• Batch size: 16

• Epochs: 100

• Dataset: 200 synthetic trajectories

• Mask fraction: ~20% of total trajectory 
length

Training Setup
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Reconstructed curve vs true
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Results metrics

Dataset MSE MAE R² 

Smooth
0.0011 ±
0.0005

0.025 ±
0.006

0.984 ±
0.006

Wiggly
0.0025 ±
0.0009

0.038 ±
0.007

0.965 ±
0.011
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• For the second attempt we constructed a more comprehensive but also more challenging 
dataset

• Used the formulas previously described, we built up multiple different trajectories

• Masked multiple randomly selected segments for further data augmentation

• Final dataset comprised of 1000 trajectories

Second attempt



• Optimizer: Adam 

• Batch size: 1

• Epochs: 50

• Dataset: 1000 synthetic trajectories

• Mask fraction: ~20% of total trajectory 
length

Training Setup
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Curve comparison true vs predicted
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Reconstructed curve
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Metrics

Metric Mean ± Std

MSE 0.003863 ± 0.003155

MAE 0.048896 ± 0.013661

R² 0.783136 ± 0.726463
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Conclusion & Further work

Both the visual and quantitative results suggest that this is a viable 
strategy for trajectory inpainting

More work would be needed to make results more reliable, if this is to be 
used in a real-life application

Further work could involve getting the work flow working with real 
trajectory data 



Thank you!
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