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Background

Motivations, context and prerequisites
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Motivation: Why Trajectory Inference

Trajectory: T0O14

+3.763el
 Many real-world trajectory tracking applications suffer —
from drops in data — e.g. navigation solutions are affected |
by GPS drop-outs
e Our goal is to reconstruct plausible trajectories from 0.0092 1§
incomplete observations by ensuring continuity and over-
all dynamic trends 5.0090 -
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Problem Setup

Starting from a simple setup

e Start from a simple setup, using synthetic data — easier to build dataset

* |nput: sequence of 2-dimensional vectors:
X=(<x,Y1>,<%X3,V2 >, ., < X, Vi >)

 Mask (hide) roughly 20% of points, to act as data drop-outs

e Qutput: smooth and continuous complete trajectory
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Common approaches for ordered data inference

Why TCNs?
Method Strength Limitation
Linear Interpolation Simple and fast Igno.res dynamics; produces unrealistic
motion
RNN / LSTM Learns squentlal Seq_uentlal computatlon — slower,
dependencies vanishing gradients
Computationally heavy; requires large
Transformer Captures long-range context
datasets
Temporal Convolutional Parallel, stable, efficient Fixed receptive field (but sufficient for
Network (TCN) temporal modeling smooth trajectories)
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Temporal Convolutional Networks (TCNs)

A brief introduction

e ATCN is a 1-dimensional convolutional network applied along the time axis
* Initially, TCNs were introduced based on the following principles:

1. Input and output have the same dimensions

2. No leakage of the future into the past

* To achieve 1. a classic TCN uses a 1-dimensional fully convolutional network architecture where

each hidden layer is the same length as the input layer, and zero padding of length (kernel size -
1) is added to keep subsequent layers the same length as previous ones

* To achieve 2. TCN uses causal convolutions, convolutions where an output at time t is convolved
only with elements from time t and earlier in the previous layer

 Simply put,
TCN = 1 — D FCN 4+ causal convolution
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Temporal Convolutional Networks

Slight variation

 Main objective is trajectory inpainting, not forecasting — we do not want to enforce causality

* We will use a variation on the classic TCN architecture, where the present can be informed by
the future as well as the past

 We did not use causal convolutions
* Each convolutional layer looks at a window of both past and future points

e Stack multiple layers which allows the model to capture long-term patterns
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Dilated Convolutional Layers

Expanding receptive field

 We want the neural network to be able to use both local and global data from out trajectory

* Dilated Convolutional Layers are a way of ensuring that without overloading the number of
parameters

* A dilated convolution acts like a normal convolution but instead of applying the kernel to
consecutive time steps, it skip a pre-set number of steps in-between

 Mathematically:

(K—1)/2
yO= ) wext—d-k) .
k=—(K—-1)/2
Dilation Points Used (for time step t) Receptive field
where
, 1 (t-1, t, t+1) 3 time steps
e K=Kkernelsize
o 2 (t-2, t, t+2) 5 time steps
* d =dilation factor
4 (t-4, t, t+4) 9 time steps

* wy = kernel weight (comprising the filter)

* X =Input vector
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Residual Connections and Normalization

* Residual connections add the input of a layer back to its output, which will prevent information
loss and eases gradient flow

* Layer normalization ensures consistent feature scaling across time

* Implementing these are common practice and will make TCNs more stable
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Implementation

Neural Network Architecture & Training
strategy
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Input structure

+ Each time step is encoded as a 4-
dimensional vector:

X —Xx-coordinate (possibly masked)

e y—y-coordinate (possibly masked)
* mask—1 if missing, O if observed

e time — normalized time index from O to 1
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Model Architecture Overview

Layer
Input

Block 1
Block 2
Block 3

Block 4

Block 5

Head
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Type

ConvlD + LN + RelU +
Residual

ConvlD + LN + RelLU +
Residual

ConvlD + LN + RelLU +
Residual

ConvlD + LN + RelLU +
Residual

ConvlD + LN + RelLU +
Residual

Conv1D (1x1 kernel)

Channels
A

64

64

64

64

64

2

Dilation

1

16

NS

Purpose
Position + mask + time

Local temporal features
Medium context
Longer dependencies

Broader motion patterns

Global temporal
structure

Predicts (X, y)
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Masking Strategy

 During training, we intentionally remove segments of the trajectory (approximately 20%)

* The mask channel marks the missing regions

* The model will infer the missing trajectory points from the observed context before and after
the gap

* For the same dataset, multiple segments will be randomly masked

 Each masking will act as a different dataset, therefore augmenting the data
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Loss Function

We train the model using a composite loss to achieve precision, continuity and smoothness of the
prediction:

Weighted MSE
Lmse =M SEmasked + aM SEunmasked

e Strongly penalizes errors in masked segments
* Very lightly penalizes observed areas — controlled by the parameter a

Continuity Loss

pred

2
pred

Leont = Yt _yt1—1|

Where t{, t, are the times corresponding to the beginning and end of the hidden segment of the
trajectory.

Smoothness Loss ,

1 Z
. pred pred
Lsmooth — ? Hyt —Yi-1
L

Implemented Loss Function:
L= Lse+ AiLcont + A2Lgmooth

Where 14,1, are parameters that have to be set
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Data (Synthetic)

* For simplicity, the neural network was trained and evaluated on
synthetic datasets

* Proposed type of trajectory:

2D Wiggly Trajectory with Noise
x(t) = sin( 2t + ¢,) + 0.3 sin( 67t + ¢y) + €,

y(t) = cos(2nt + ¢,) + 0.3 sin(4nt + 0.5 + ¢,) + €y,

where:
bx, Py ~ Uniform(0» 2m)are random phase shifts,
Ex, €y ~ N (0 g?)are Gaussian noise terms

* Phase shifts and random noise were added for data augmentation
purposes
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Results &
Conclusions
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First attempt

e Sanity check initial attempt was made with a synthetic dataset containing 2 trajectories

 The dataset was constructed using random different masked segments of the same 2
trajectories

* Essentially augmented dataset to have 100 entries for each generated trajectory (200 total)
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Training Setup

e Optimizer: Adam

* Batchsize: 16

* Epochs: 100

e Dataset: 200 synthetic trajectories

 Mask fraction: ~20% of total trajectory
length




Reconstructed curve vs true
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Results metrics

Dataset MSE MAE

0.0011 + 0.025 +

Smooth \)c 0.006

g 0.0025+  0.038 +
&8ly 0.0009 0.007

0.984 +
0.006

0.965 *
0.011
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Second attempt

* For the second attempt we constructed a more comprehensive but also more challenging
dataset

 Used the formulas previously described, we built up multiple different trajectories
 Masked multiple randomly selected segments for further data augmentation

* Final dataset comprised of 1000 trajectories
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Training Setup

e Optimizer: Adam

* Batchsize: 1

* Epochs: 50

e Dataset: 1000 synthetic trajectories

 Mask fraction: ~20% of total trajectory
length




Curve comparison true vs predicted

Example 1

0.5 1

0.0 1
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- True Trajectory
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Reconstructed curve

Reconstructed Trajectory (Example 1) Reconstructed Trajectory (Example 2) Reconstructed Trajectory (Example 3)
1.5~ 1.0 A 10 -
1.0 A
0.5 - 0.5
0.5 A
0.0 A
0.0 1
0.0
—0.5
—-0.5 - —0.5
—1.0 -
—1.0 -
True —1.0 - True True
- Reconstructed (input + predicted) - Reconstructed (input + predicted) —1.5 - Reconstructed (input + predicted)
—1.51 Predicted (masked) points Predicted (masked) points Predicted (masked) points
-15 -1.0 -05 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
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Metrics /’
Metric Mean * Std
MSE 0.003863 £ 0.003155
MAE 0.048896 £ 0.013661

R? 0.783136 £ 0.726463




Conclusion & Further work

ﬂ Both the visual and quantitative results suggest that this is a viable
strategy for trajectory inpainting

1010 More work would be needed to make results more reliable, if this is to be
1010 used in a real-life application

Further work could involve getting the work flow working with real
trajectory data
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Thank you!

© 2025 OXTS. This document and the information contained in it are
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