
O X T S | 1

Inferring Missing
Trajectory Data
with Temporal
Convolutional
Networks
Ilinca Tiriblecea

O X T S | 2

Background

Motivations, context and prerequisites

O X T S | 3

• Many real-world trajectory tracking applications suffer
from drops in data – e.g. navigation solutions are affected
by GPS drop-outs

• Our goal is to reconstruct plausible trajectories from
incomplete observations by ensuring continuity and over-
all dynamic trends

Motivation: Why Trajectory Inference

O X T S | 4

Starting from a simple setup

• Start from a simple setup, using synthetic data – easier to build dataset

• Input: sequence of 2-dimensional vectors:
𝑋 = < 𝑥1, 𝑦1 >,< 𝑥2, 𝑦2 >,… ,< 𝑥𝑛, 𝑦𝑛 >

• Mask (hide) roughly 20% of points, to act as data drop-outs

• Output: smooth and continuous complete trajectory

Problem Setup

O X T S | 5

Why TCNs?

Common approaches for ordered data inference

Method Strength Limitation

Linear Interpolation Simple and fast
Ignores dynamics; produces unrealistic
motion

RNN / LSTM
Learns sequential
dependencies

Sequential computation → slower,
vanishing gradients

Transformer Captures long-range context
Computationally heavy; requires large
datasets

Temporal Convolutional
Network (TCN)

Parallel, stable, efficient
temporal modeling

Fixed receptive field (but sufficient for
smooth trajectories)

O X T S | 6

A brief introduction

• A TCN is a 1-dimensional convolutional network applied along the time axis

• Initially, TCNs were introduced based on the following principles:

1. Input and output have the same dimensions

2. No leakage of the future into the past

• To achieve 1. a classic TCN uses a 1-dimensional fully convolutional network architecture where
each hidden layer is the same length as the input layer, and zero padding of length (kernel size −
1) is added to keep subsequent layers the same length as previous ones

• To achieve 2. TCN uses causal convolutions, convolutions where an output at time t is convolved
only with elements from time t and earlier in the previous layer

• Simply put,
TCN = 1 − D FCN + causal convolution

Temporal Convolutional Networks (TCNs)

O X T S | 7

Slight variation

• Main objective is trajectory inpainting, not forecasting – we do not want to enforce causality

• We will use a variation on the classic TCN architecture, where the present can be informed by
the future as well as the past

• We did not use causal convolutions

• Each convolutional layer looks at a window of both past and future points

• Stack multiple layers which allows the model to capture long-term patterns

Temporal Convolutional Networks

O X T S | 8

Expanding receptive field

• We want the neural network to be able to use both local and global data from out trajectory

• Dilated Convolutional Layers are a way of ensuring that without overloading the number of
parameters

• A dilated convolution acts like a normal convolution but instead of applying the kernel to
consecutive time steps, it skip a pre-set number of steps in-between

• Mathematically:

𝑦 𝑡 = ෍

𝑘=−(K−1)/2

(𝐾−1)/2

𝑤𝑘 ⋅ 𝑥 𝑡 − 𝑑 ⋅ 𝑘 ,

where

• K = kernel size

• d = dilation factor

• 𝑤𝑘 = kernel weight (comprising the filter)

• x = input vector

Dilated Convolutional Layers

K = 3

Dilation Points Used (for time step t) Receptive field

1 (t−1, t, t+1) 3 time steps

2 (t−2, t, t+2) 5 time steps

4 (t−4, t, t+4) 9 time steps

O X T S | 9

• Residual connections add the input of a layer back to its output, which will prevent information
loss and eases gradient flow

• Layer normalization ensures consistent feature scaling across time

• Implementing these are common practice and will make TCNs more stable

Residual Connections and Normalization

O X T S | 1 0

Implementation

Neural Network Architecture & Training
strategy

Each time step is encoded as a 4-
dimensional vector:

• x – x-coordinate (possibly masked)

• y – y-coordinate (possibly masked)

• mask – 1 if missing, 0 if observed

• time – normalized time index from 0 to 1

Input structure

O X T S | 1 2

Model Architecture Overview

Layer Type Channels Dilation Purpose

Input — 4 — Position + mask + time

Block 1
Conv1D + LN + ReLU +
Residual

64 1 Local temporal features

Block 2
Conv1D + LN + ReLU +
Residual

64 2 Medium context

Block 3
Conv1D + LN + ReLU +
Residual

64 4 Longer dependencies

Block 4
Conv1D + LN + ReLU +
Residual

64 8 Broader motion patterns

Block 5
Conv1D + LN + ReLU +
Residual

64 16
Global temporal
structure

Head Conv1D (1×1 kernel) 2 — Predicts (x,̂ ŷ)

O X T S | 1 3

• During training, we intentionally remove segments of the trajectory (approximately 20%)

• The mask channel marks the missing regions

• The model will infer the missing trajectory points from the observed context before and after
the gap

• For the same dataset, multiple segments will be randomly masked

• Each masking will act as a different dataset, therefore augmenting the data

Masking Strategy

O X T S | 1 4

We train the model using a composite loss to achieve precision, continuity and smoothness of the
prediction:

Weighted MSE
𝑳𝒎𝒔𝒆 = 𝑴𝑺𝑬𝒎𝒂𝒔𝒌𝒆𝒅 + 𝜶𝑴𝑺𝑬𝒖𝒏𝒎𝒂𝒔𝒌𝒆𝒅

• Strongly penalizes errors in masked segments

• Very lightly penalizes observed areas – controlled by the parameter α

Continuity Loss

𝑳𝒄𝒐𝒏𝒕 = 𝒚𝒕𝟏
𝒑𝒓𝒆𝒅

− 𝒚𝒕𝟏−𝟏

𝟐

+ 𝒚𝒕𝟐
𝒑𝒓𝒆𝒅

− 𝒚𝒕𝟐+𝟏

𝟐

Where 𝑡1, 𝑡2 are the times corresponding to the beginning and end of the hidden segment of the
trajectory.

Smoothness Loss

𝑳𝒔𝒎𝒐𝒐𝒕𝒉 =
𝟏

𝑻
෍

𝒕

𝒚𝒕
𝒑𝒓𝒆𝒅

− 𝒚𝒕−𝟏
𝒑𝒓𝒆𝒅

𝟐

Implemented Loss Function:
𝑳 = 𝑳𝒎𝒔𝒆 + 𝝀𝟏𝑳𝒄𝒐𝒏𝒕 + 𝝀𝟐𝑳𝒔𝒎𝒐𝒐𝒕𝒉

Where 𝜆1, 𝜆2 are parameters that have to be set

Loss Function

O X T S | 1 5

• For simplicity, the neural network was trained and evaluated on
synthetic datasets

• Proposed type of trajectory:

2D Wiggly Trajectory with Noise
𝑥 𝑡 = sin(2𝜋𝑡 + 𝜙𝑥) + 0.3 sin(6𝜋𝑡 + 𝜙𝑦) + 𝜖𝑥,

𝑦 𝑡 = cos(2𝜋𝑡 + 𝜙𝑦) + 0.3 sin(4𝜋𝑡 + 0.5 + 𝜙𝑥) + 𝜖𝑦,

where:

𝜙𝑥, 𝜙𝑦 ∼ Uniform 0 2𝜋 are random phase shifts,

𝜖𝑥, 𝜖𝑦 ∼ 𝒩 0 𝜎2 are Gaussian noise terms

• Phase shifts and random noise were added for data augmentation
purposes

Data (Synthetic)

O X T S | 1 6

Results &
Conclusions

O X T S | 1 7

• Sanity check initial attempt was made with a synthetic dataset containing 2 trajectories

• The dataset was constructed using random different masked segments of the same 2
trajectories

• Essentially augmented dataset to have 100 entries for each generated trajectory (200 total)

First attempt

• Optimizer: Adam

• Batch size: 16

• Epochs: 100

• Dataset: 200 synthetic trajectories

• Mask fraction: ~20% of total trajectory
length

Training Setup

O X T S | 1 9

Reconstructed curve vs true

O X T S | 2 0

Results metrics

Dataset MSE MAE R²

Smooth
0.0011 ±
0.0005

0.025 ±
0.006

0.984 ±
0.006

Wiggly
0.0025 ±
0.0009

0.038 ±
0.007

0.965 ±
0.011

O X T S | 2 1

• For the second attempt we constructed a more comprehensive but also more challenging
dataset

• Used the formulas previously described, we built up multiple different trajectories

• Masked multiple randomly selected segments for further data augmentation

• Final dataset comprised of 1000 trajectories

Second attempt

• Optimizer: Adam

• Batch size: 1

• Epochs: 50

• Dataset: 1000 synthetic trajectories

• Mask fraction: ~20% of total trajectory
length

Training Setup

O X T S | 2 3

Curve comparison true vs predicted

O X T S | 2 4

Reconstructed curve

O X T S | 2 5

Metrics

Metric Mean ± Std

MSE 0.003863 ± 0.003155

MAE 0.048896 ± 0.013661

R² 0.783136 ± 0.726463

O X T S | 2 6

Conclusion & Further work

Both the visual and quantitative results suggest that this is a viable
strategy for trajectory inpainting

More work would be needed to make results more reliable, if this is to be
used in a real-life application

Further work could involve getting the work flow working with real
trajectory data

Thank you!

O X T S | 2 8

• Bai, S., Kolter, J. Z., & Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling. arXiv:1803.01271 [cs.LG]. https://arxiv.org/abs/1803.01271

• Lea, C., Vidal, R., Reiter, A., & Hager, G. D. (2016). Temporal Convolutional Networks: A Unified Approach to
Action Segmentation. arXiv:1608.08242 [cs.CV]. https://arxiv.org/abs/1608.08242

• GitHub - locuslab/TCN: Sequence modeling benchmarks and temporal convolutional networks

• paul-krug/pytorch-tcn: (Realtime) Temporal Convolutions in PyTorch

References

https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1608.08242
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn

	Slide 1: Inferring Missing Trajectory Data with Temporal Convolutional Networks
	Slide 2: Background
	Slide 3: Motivation: Why Trajectory Inference
	Slide 4: Problem Setup
	Slide 5: Common approaches for ordered data inference
	Slide 6: Temporal Convolutional Networks (TCNs)
	Slide 7: Temporal Convolutional Networks
	Slide 8: Dilated Convolutional Layers
	Slide 9: Residual Connections and Normalization
	Slide 10: Implementation
	Slide 11: Input structure
	Slide 12: Model Architecture Overview
	Slide 13: Masking Strategy
	Slide 14: Loss Function
	Slide 15: Data (Synthetic)
	Slide 16: Results & Conclusions
	Slide 17: First attempt
	Slide 18: Training Setup
	Slide 19: Reconstructed curve vs true
	Slide 20: Results metrics
	Slide 21: Second attempt
	Slide 22: Training Setup
	Slide 23: Curve comparison true vs predicted
	Slide 24: Reconstructed curve
	Slide 25: Metrics
	Slide 26: Conclusion & Further work
	Slide 27: Thank you!
	Slide 28: References

