LA SDEL L

AL

Inferring Missing
Trajectory Data
with Temporal
Convolutional
Networks

llinca Tiriblecea

OXTS

Background

Motivations, context and prerequisites

OXTS

Motivation: Why Trajectory Inference

Trajectory: T0O14

+3.763el
 Many real-world trajectory tracking applications suffer —
from drops in data — e.g. navigation solutions are affected |
by GPS drop-outs
e Our goal is to reconstruct plausible trajectories from 0.0092 1§
incomplete observations by ensuring continuity and over-
all dynamic trends 5.0090 -
E 0.0088 -
0.0086 -
0.0084 -

! ! ! !
—0.0076-0.0074 —0.0072 —0.0070
Longitude -—1.2241e2

oxTs’ o

Problem Setup

Starting from a simple setup

e Start from a simple setup, using synthetic data — easier to build dataset

* |nput: sequence of 2-dimensional vectors:
X=(<x,Y1>,<%X3,V2 >, ., < X, Vi >)

 Mask (hide) roughly 20% of points, to act as data drop-outs

e Qutput: smooth and continuous complete trajectory

oxTs’ o

Common approaches for ordered data inference

Why TCNs?
Method Strength Limitation
Linear Interpolation Simple and fast Igno.res dynamics; produces unrealistic
motion
RNN / LSTM Learns squentlal Seq_uentlal computatlon — slower,
dependencies vanishing gradients
Computationally heavy; requires large
Transformer Captures long-range context
datasets
Temporal Convolutional Parallel, stable, efficient Fixed receptive field (but sufficient for
Network (TCN) temporal modeling smooth trajectories)

oxTs’

NS

OXTS | 5

Temporal Convolutional Networks (TCNs)

A brief introduction

e ATCN is a 1-dimensional convolutional network applied along the time axis
* Initially, TCNs were introduced based on the following principles:

1. Input and output have the same dimensions

2. No leakage of the future into the past

* To achieve 1. a classic TCN uses a 1-dimensional fully convolutional network architecture where

each hidden layer is the same length as the input layer, and zero padding of length (kernel size -
1) is added to keep subsequent layers the same length as previous ones

* To achieve 2. TCN uses causal convolutions, convolutions where an output at time t is convolved
only with elements from time t and earlier in the previous layer

 Simply put,
TCN = 1 — D FCN 4+ causal convolution

oxTs’

OXTS | 6

Temporal Convolutional Networks

Slight variation

 Main objective is trajectory inpainting, not forecasting — we do not want to enforce causality

* We will use a variation on the classic TCN architecture, where the present can be informed by
the future as well as the past

 We did not use causal convolutions
* Each convolutional layer looks at a window of both past and future points

e Stack multiple layers which allows the model to capture long-term patterns

oxXTs’ o

Dilated Convolutional Layers

Expanding receptive field

 We want the neural network to be able to use both local and global data from out trajectory

* Dilated Convolutional Layers are a way of ensuring that without overloading the number of
parameters

* A dilated convolution acts like a normal convolution but instead of applying the kernel to
consecutive time steps, it skip a pre-set number of steps in-between

 Mathematically:

(K—1)/2
yO=) wext—d-k) .
k=—(K—-1)/2
Dilation Points Used (for time step t) Receptive field
where
, 1 (t-1, t, t+1) 3 time steps
e K=Kkernelsize
o 2 (t-2, t, t+2) 5 time steps
* d =dilation factor
4 (t-4, t, t+4) 9 time steps

* wy = kernel weight (comprising the filter)

* X =Input vector

oxXTs’ o

Residual Connections and Normalization

* Residual connections add the input of a layer back to its output, which will prevent information
loss and eases gradient flow

* Layer normalization ensures consistent feature scaling across time

* Implementing these are common practice and will make TCNs more stable

oxXTs’ L

Implementation

Neural Network Architecture & Training
strategy

OXTS

Input structure

+ Each time step is encoded as a 4-
dimensional vector:

X —Xx-coordinate (possibly masked)

e y—y-coordinate (possibly masked)
* mask—1 if missing, O if observed

e time — normalized time index from O to 1

|

Model Architecture Overview

Layer
Input

Block 1
Block 2
Block 3

Block 4

Block 5

Head

oxTs’

Type

ConvlD + LN + RelU +
Residual

ConvlD + LN + RelLU +
Residual

ConvlD + LN + RelLU +
Residual

ConvlD + LN + RelLU +
Residual

ConvlD + LN + RelLU +
Residual

Conv1D (1x1 kernel)

Channels
A

64

64

64

64

64

2

Dilation

1

16

NS

Purpose
Position + mask + time

Local temporal features
Medium context
Longer dependencies

Broader motion patterns

Global temporal
structure

Predicts (X, y)

OXTS | 12

Masking Strategy

 During training, we intentionally remove segments of the trajectory (approximately 20%)

* The mask channel marks the missing regions

* The model will infer the missing trajectory points from the observed context before and after
the gap

* For the same dataset, multiple segments will be randomly masked

 Each masking will act as a different dataset, therefore augmenting the data

oxXTs’ L

Loss Function

We train the model using a composite loss to achieve precision, continuity and smoothness of the
prediction:

Weighted MSE
Lmse =M SEmasked + aM SEunmasked

e Strongly penalizes errors in masked segments
* Very lightly penalizes observed areas — controlled by the parameter a

Continuity Loss

pred

2
pred

Leont = Yt _yt1—1|

Where t{, t, are the times corresponding to the beginning and end of the hidden segment of the
trajectory.

Smoothness Loss ,

1 Z
. pred pred
Lsmooth — ? Hyt —Yi-1
L

Implemented Loss Function:
L= Lse+ AiLcont + A2Lgmooth

Where 14,1, are parameters that have to be set

oxXTs’ L

Data (Synthetic)

* For simplicity, the neural network was trained and evaluated on
synthetic datasets

* Proposed type of trajectory:

2D Wiggly Trajectory with Noise
x(t) = sin(2t + ¢,) + 0.3 sin(67t + ¢y) + €,

y(t) = cos(2nt + ¢,) + 0.3 sin(4nt + 0.5 + ¢,) + €y,

where:
bx, Py ~ Uniform(0» 2m)are random phase shifts,
Ex, €y ~ N (0 g?)are Gaussian noise terms

* Phase shifts and random noise were added for data augmentation
purposes

oxTs’

1.0

0.5

—1.0 -

Sample 2D Wiggly Trajectories

—— Trajectory 1

| Trajectory 2
e Startl
Start 2

)

7

—-1.5 —-1.0

OXTS | 15

Results &
Conclusions

OXTS

First attempt

e Sanity check initial attempt was made with a synthetic dataset containing 2 trajectories

 The dataset was constructed using random different masked segments of the same 2
trajectories

* Essentially augmented dataset to have 100 entries for each generated trajectory (200 total)

oxXTs’ L

Training Setup

e Optimizer: Adam

* Batchsize: 16

* Epochs: 100

e Dataset: 200 synthetic trajectories

 Mask fraction: ~20% of total trajectory
length

Reconstructed curve vs true

1.0 -
0.5

0.0 A

—1.0 S

TCN Reconstruction — Wiggly Curve

— True
- == Predicted
Observed

T T
—1.0 —0.5

oxTs’

!
0.0

!
0.5

!
1.0

N

TCN Reconstruction — Smooth Curve

1.0 4
0.5 -
— True
0.0 - == Predicted
e Observed
_.[]5 _
_]_D -

! ! ! ! !
—1.0 —0.3 0.0 0.5 1.0

OXTS | 219

Results metrics

Dataset MSE MAE

0.0011 + 0.025 +

Smooth \)c 0.006

g 0.0025+ 0.038 +
&8ly 0.0009 0.007

0.984 +
0.006

0.965 *
0.011

, .
» ‘\
¥

’w
\"

Second attempt

* For the second attempt we constructed a more comprehensive but also more challenging
dataset

 Used the formulas previously described, we built up multiple different trajectories
 Masked multiple randomly selected segments for further data augmentation

* Final dataset comprised of 1000 trajectories

oxXTs’ L

Training Setup

e Optimizer: Adam

* Batchsize: 1

* Epochs: 50

e Dataset: 1000 synthetic trajectories

 Mask fraction: ~20% of total trajectory
length

Curve comparison true vs predicted

Example 1

0.5 1

0.0 1

—0.5 A

—1.0 A

- True Trajectory

Predicted
Masked region

—-1.0 -0.5

oxTs’

0.0

0.5 1.0

Example 2

1.0 -

0.5

0.0

- True Trajectory
—— Predicted

e Masked region

-1.0 -0.5 0.0 0.5 1.0

1.5 1

-1.5

N

Example 3

- True Trajectory
—— Predicted

e Masked region

-1.0 -0.5 0.0 0.5 1.0

OXTS | 23

Reconstructed curve

Reconstructed Trajectory (Example 1) Reconstructed Trajectory (Example 2) Reconstructed Trajectory (Example 3)
1.5~ 1.0 A 10 -
1.0 A
0.5 - 0.5
0.5 A
0.0 A
0.0 1
0.0
—0.5
—-0.5 - —0.5
—1.0 -
—1.0 -
True —1.0 - True True
- Reconstructed (input + predicted) - Reconstructed (input + predicted) —1.5 - Reconstructed (input + predicted)
—1.51 Predicted (masked) points Predicted (masked) points Predicted (masked) points
-15 -1.0 -05 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

oxTs’ e

Metrics /’
Metric Mean * Std
MSE 0.003863 £ 0.003155
MAE 0.048896 £ 0.013661

R? 0.783136 £ 0.726463

Conclusion & Further work

ﬂ Both the visual and quantitative results suggest that this is a viable
strategy for trajectory inpainting

1010 More work would be needed to make results more reliable, if this is to be
1010 used in a real-life application

Further work could involve getting the work flow working with real
trajectory data

- L P 3 ; = i L.
4 "“. “:;\4.‘ . J-."L " o
- “. . .0.14 ’.'_‘-’. -~ .oé" -
s .,_. ." J‘.‘.‘ ,_.") .
. S ‘.‘\ . ". ;', > ‘{ .
‘\ _‘? y ~, » - “. ‘. “...
o T OXTS 2@ ‘.ri_?t
. . eea d
‘“ ' . % T
™ E x i, . “; -
“ ‘_‘ : - - ‘o"_:“ “~
t N~ R - - -
L TR s Y o~ -

EaBRiNTINglugl

1

s
]
.

-
-
|
i
i
i
[

Thank you!

© 2025 OXTS. This document and the information contained in it are
provided in confidence.

References

 Baij, S, Kolter, J. Z., & Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling. arXiv:1803.01271 [cs.LG]. https://arxiv.org/abs/1803.01271

 Lea, C, Vidal, R., Reiter, A., & Hager, G. D. (2016). Temporal Convolutional Networks: A Unified Approach to
Action Segmentation. arXiv:1608.08242 [cs.CV]. https://arxiv.org/abs/1608.08242

 GitHub - locuslab/TCN: Sequence modeling benchmarks and temporal convolutional networks

 paul-krug/pytorch-tcn: (Realtime) Temporal Convolutions in PyTorch

oxTs’ e

https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1608.08242
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN
https://github.com/locuslab/TCN
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn
https://github.com/paul-krug/pytorch-tcn

	Slide 1: Inferring Missing Trajectory Data with Temporal Convolutional Networks
	Slide 2: Background
	Slide 3: Motivation: Why Trajectory Inference
	Slide 4: Problem Setup
	Slide 5: Common approaches for ordered data inference
	Slide 6: Temporal Convolutional Networks (TCNs)
	Slide 7: Temporal Convolutional Networks
	Slide 8: Dilated Convolutional Layers
	Slide 9: Residual Connections and Normalization
	Slide 10: Implementation
	Slide 11: Input structure
	Slide 12: Model Architecture Overview
	Slide 13: Masking Strategy
	Slide 14: Loss Function
	Slide 15: Data (Synthetic)
	Slide 16: Results & Conclusions
	Slide 17: First attempt
	Slide 18: Training Setup
	Slide 19: Reconstructed curve vs true
	Slide 20: Results metrics
	Slide 21: Second attempt
	Slide 22: Training Setup
	Slide 23: Curve comparison true vs predicted
	Slide 24: Reconstructed curve
	Slide 25: Metrics
	Slide 26: Conclusion & Further work
	Slide 27: Thank you!
	Slide 28: References

